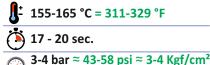


PREMIUM 1000

Application steps

- Cut the Flex material in mirror by cutting Plotter or Laser.
- 2 Weed the exceeding material,
- **3** Press the garment for 2-3 sec. (to take the moisture out).
- Place the Flex material on the garment with the polyester carrier up.
- **5** Heat press with the mentioned parameters,
- 6 Remove the polyester carrier hot, warm or cold,
- **7** Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



Suitable for: 100% Cotton, Cotton/Polyester/Acrylic Mixtures

Yes
For more details consult our
website

Hot, warm or cold Peel

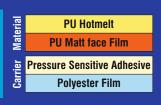
medium pressure

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals, plasticizers or PVC.
- NovaFlex PREMIUM 1000 has a self-adhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON.
- NovaFlex PREMIUM is available with a blockout intermediate layer as NovaFlex 4000 series. The colors marked with an S have an excellent sublimation resistance due to the type of pigment used. We recommend to test before using these colors as subli-stop on various sublimated fabrics.

All colors marked with W are also available as WEED-EX, the innovative system that simplifies weeding and saves time.

See our Technical data sheet.


For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Roll sizes: 500mm x 10m, approx 20"x 11 yds 500mm x 20m, approx 20"x 22 yds

90µm 3,6 mil

PREMIUM 1000

1001 WHITE	W	1010 YELLOW	W	1020 GOLD METALLIC S, W	1070 OLD GOLD
1002 BLACK	S, W	1012 GREY	s, w	1030 SILVER METALLIC S, W	1073 BRIGHT RED W
1003 LIGHT BLUE	W	1013 TURQUOISE	S	1040 NEON YELLOW	1074 LIGHT GREEN
1004 GREEN	S, W	1014 PURPLE	S	1041 NEON GREEN	1075 GLACIER BLUE
1005 NAVY BLUE	S, W	1015 ORANGE	W	1043 NEON PINK	1076 VIOLET
1006 ROYAL BLUE	S, W	1016 BROWN	S	1061 BABY PINK	
1007 FOREST GREEN	W	1017 BEIGE		1062 FUCHSIA	
1008 RED	W	1018 MEDIUM YELLOW	W	1065 SKY BLUE	
					ast of Best
1009 BORDEAUX		1019 LEMON YELLOW	W	1067 APPLE GREEN	COUNTY IN EURO

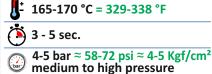
SPEEDY 2000

5 seconds

Application steps

- 1 Cut the Flex material in mirror by cutting Plotter or Laser,
- 2 Weed the exceeding material,
- Tress the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **5** Heat press with the mentioned parameters,
- 6 Remove the polyester carrier warm,
- 7 Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



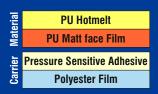
Suitable for: 100% Cotton, Cotton/Polyester/Acrylic Mixtures

Yes
For more details consult our website

Warm Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals, plasticizers or PVC.
- NovaFlex SPEEDY 2000 has a self-adhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.
- The following NovaFlex SPEEDY colors are also suitable to be used on sublimated fabrics: 2002 Black, 2005 Navy Blue, 2007 Forest Green, 2020 Gold and 2030 Silver.


For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

75µm 3 mil

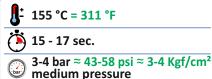
SPEEDY 2000 5 seconds

2001 WHITE	2010 YELLOW
2002 BLACK	2012 GREY
2003 LIGHT BLUE	2015 ORANGE
2004 GREEN	2019 LEMON YELLOW
2005 NAVY BLUE	2020 GOLD
2006 ROYAL BLUE	2030 SILVER
2007 FOREST GREEN	2042 NEON PINK
2008 RED	2043 NEON GREEN

Application steps

- 1 Cut the Flex material in mirror by cutting Plotter or Laser,
- 2 Weed the exceeding material,
- 3 Press the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **6** Heat press with the mentioned parameters,
- 6 Remove the polyester carrier hot or cold,
- 7 Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



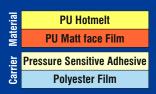
Suitable for: 100% Cotton, Cotton/Polyester/Acrylic Mixtures

Yes For more details consult our website

Hot or Cold Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals, plasticizers or PVC.
- NovaFlex STANDARD+ 3000 has a selfadhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.
- The following NovaFlex STANDARD+ colors are also suitable to be used on sublimated fabrics: 3002 Black, 3005 Navy Blue, 3007 Forest Green, 3020 Gold and 3030 Silver.


For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

80um 3,2 mil

STANDARD+ 3000

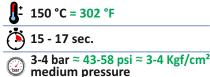
3001 WHITE	3010 SUN YELLOW	3040 NEON YELLOW	
3002 BLACK	3012 LIGHT GREY	3041 NEON GREEN	
3003 MEDIUM BLUE	3014 PURPLE	3042 NEON ORANGE	
3004 GREEN	3015 ORANGE	3043 NEON PINK	
3005 NAVY BLUE	3018 YELLOW	3062 FUCHSIA	
3006 ROYAL BLUE	3019 LEMON YELLOW	3073 FLAME RED	
3007 FOREST GREEN	3020 GOLD METALLIC		
			et of
			143
3008 RED	3030 SILVER METALLIC		mile
			The state of the s
			ADE

STRETCH 3500

Application steps

- Cut the Flex material in mirror by cutting Plotter or Laser,
- 2 Weed the exceeding material,
- Tress the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **6** Heat press with the mentioned parameters,
- 6 Remove the polyester carrier hot or cold,
- 7 Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



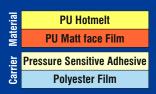
Suitable for: 100% Cotton, Cotton/Polyester/Acrylic/Lycra & other Elastic Mixtures

No For more details consult our website

Hot or Cold Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals, plasticizers or PVC.
- NovaFlex STRETCH 3500 has a selfadhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.
- The following NovaFlex STRETCH colors are also suitable to be used on sublimated fabrics: 3502 Black, 3505 Navy Blue, 3520 Gold and 3530 Silver.


For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

85µm 3,4 mil

STRETCH 3500

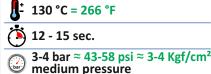
3501 WHITE	3515 ORANGE
3502 BLACK	3520 GOLD
3503 MEDIUM BLUE	3530 SILVER
3504 GREEN	
3505 NAVY BLUE	
3506 ROYAL BLUE	
3508 RED	
3510 YELLOW	

NYLON 3800

Application steps

- Cut the Flex material in mirror by cutting Plotter or Laser.
- 2 Weed the exceeding material,
- Tress the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **6** Heat press with the mentioned parameters,
- **6** Remove the polyester carrier cold,
- Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



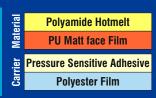
Suitable for: Nylon and Coated fabrics

Yes
For more details consult our
website

Cold Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals, plasticizers or PVC.
- NovaFlex NYLON 3800 has a self-adhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- NovaFlex NYLON is suitable for nylon and hydrophobic impregnated fabrics.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.


For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

50µm 2 mil

NYLON 3800

3801 WHITE	3820 GOLD
3802 BLACK	3830 SILVER
SOUL DEPOSIT	SOSS SIEVEN
3803 LIGHT BLUE	3840 FLUO YELLOW
3804 GREEN	3841 FLUO GREEN
200C DOVAL BLUE	2942 FILIO ODANICE
3806 ROYAL BLUE	3842 FLUO ORANGE
3806 ROYAL BLUE	3842 FLUO ORANGE
3806 ROYAL BLUE	3842 FLUO ORANGE
3806 ROYAL BLUE 3808 RED	3842 FLUO ORANGE 3843 FLUO PINK
3808 RED	
3808 RED	
3808 RED	
3808 RED	
3808 RED 3810 YELLOW	

SUBLISTOP 4000

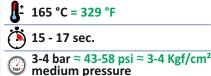
Application steps

- Cut the Flex material in mirror by cutting Plotter or Laser.
- 2 Weed the exceeding material,
- 3 Press the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- 6 Heat press with the mentioned parameters,
- 6 Remove the polyester carrier warm,
- 7 Press again for 2-3 sec. at same parameters.

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.

We recommend to make the cutting test from your plotter before proceeding with production

Suitable for: Sublimation printed fabrics

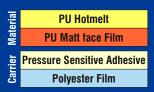

- The materials used are ecologically safe and do not contain heavy metals plasticizers or PVC.
- do not contain heavy metals, plasticizers or PVC.

 NovaFlex SUBLISTOP 4000 has a self-adhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.

Yes For more details consult our website • Due to the special formulation, NovaFlex SUBLISTOP 4000 is not stretchable.

For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

Warm Peel


Roll sizes: 500mm x 10m approx 20" x 11 yds

115µm 4,5 mil

SUBLISTOP 4000

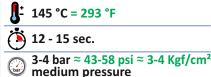
4001 WHITE		
4008 RED		
4010 YELLOW		
4015 ORANGE		
4019 LEMON YELLOW		

ECO 5000

Application steps

- Out the Flex material in mirror by cutting Plotter
- 2 Weed the exceeding material,
- Tress the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **5** Heat press with the mentioned parameters,
- **6** Remove the polyester carrier cold,
- Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



Suitable for: 100% Cotton, Cotton/Polyester/Acrylic Mixtures

No For more details consult our website

Cold Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe and do not contain heavy metals and phthalates, but are not suitable for applying to baby clothes.
- NovaFlex ECO 5000 has a self-adhesive polyester liner to enable repositioning of accidentally removed letters, also good for safe positioning on garments before production.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.
- The following NovaFlex ECO colors are also suitable to be used on sublimated fabrics: 5002 Black, 5005 Navy Blue, 5007 Forest Green, 5020 Gold and 5030 Silver.

For best results we recommend to store the rolls away from heat moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

110µm 4,4 mil

ECO 5000

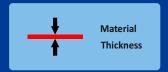
5001 WHITE	5010 YELLOW	5030 SILVER	5099 PURPLE BLUE
5002 BLACK	5012 GREY	5040 FLUO YELLOW	
5003 LIGHT BLUE	5015 ORANGE	5041 FLUO GREEN	
5004 GREEN	5016 BROWN	5042 FLUO ORANGE	
5005 NAVY BLUE	5017 BEIGE	5043 FLUO PINK	
5006 ROYAL BLUE	5018 GOLDEN YELLOW	5060 PINK	
5007 FOREST GREEN	5019 LEMON YELLOW	5073 FIRE RED	
			USI OF BEST
5008 RED	5020 GOLD	5098 VIVID RED	
			MADE IN EUR

PRINTABLE 7000

General Remarks

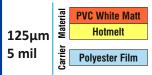
For best results we recommend to store the rolls vertically and away from heat, moisture & direct sunlight

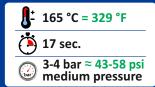
500mm x 10m, approx 20" x 11 yds for 7101, 7201, 7301, 7401, 7501, 7701.


480mm x 10m, approx 18,9" x 11 yds for 7150

Warm Peel using Witpac transfer tape AT 0003

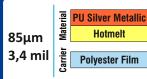
We recommend to make the cutting test from your plotter before proceeding with production



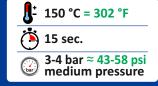


Please wash & stretch after 24 hours

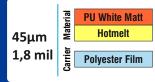
7101 ECO (for Solvent, Eco-Solvent Inkjet printers)



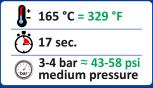
100% Cotton, Polyester / Acrylic and Mixtures



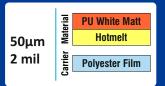
7150 METALLIC (for Solvent, Eco-Solvent Inkjet printers)



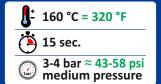
100% Cotton,
Polyester / Acrylic
and Mixtures



7201 LATEX (for Solvent, Eco-Solvent and Latex Inkjet printers)

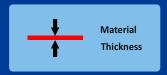


100% Cotton,
Polyester / Acrylic
and Mixtures



7301 ELASTIC (for Solvent, Eco-Solvent Inkjet printers)

100% Cotton, Polyester / Acrylic, Lycra and Mixtures

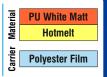

NOVA-FLEX PRINTABLE 7000

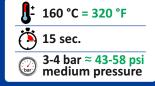
Application steps

- Out the printed Flex material by cutting Plotter.
- 2 Weed the exceeding material,
- 3 Press the garment for 2-3 sec. (to take the moisture out),
- 4 Lift the printed Flex with the Transfer Tape AT0003 from the original carrier.
- Output Description
 5 Place the Flex material on the garment with the Transfer Tape AT0003 up,
- 6 Heat press with the mentioned parameters,
- Remove the Transfer Tape AT0003 warm,
- 8 Press again for 2-3 sec. at same parameters with an Antistick paper on top.

Remarks

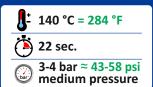
- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex Printable ALL ROUND 7501.
- For sublimated fabrics please use NovaFlex Printable SUBLI-STOP 7701
- Transferring the NovaFlex Printables 7000 series with the WITPAC polyester Transfer Tape AT0003, allows safe positioning on garments before production.




Please wash & stretch after 24 hours

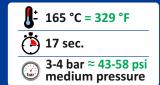
7401 STANDARD (for Solvent, Eco-Solvent Inkjet printers)

100% Cotton, Polyester / Acrylic and Mixtures



7501 ALL ROUND (for Solvent, Eco-Solvent Inkjet printers)

100% Cotton **Coated fabrics** and Nylon



7701 SUBLISTOP (for Solvent, Eco-Solvent Inkjet printers)

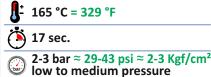
Sublimated fabrics

SPORT 8000

Application steps

- Out the Flex material in mirror by cutting Plotter
- 2 Weed the exceeding material,
- Tress the garment for 2-3 sec. (to take the moisture out),
- Place the Flex material on the garment with the polyester carrier up,
- **6** Heat press with the mentioned parameters,
- 6 Remove the polyester carrier warm,
- 7 Press again for 2-3 sec. at same parameters.

We recommend to make the cutting test from your plotter before proceeding with production



Suitable for: 100% Cotton, Cotton/Polyester/Acrylic Mixtures

No For more details consult our website

Warm Peel

Remarks

- Due to different quality of Garments & Heat Presses in the market, we recommend evaluation tests before any application.
- Please follow the washing instructions of the garment and iron on the back side.
- All information mentioned is based on our tests in the lab.
- The materials used are ecologically safe, but not recommended for baby clothes.
- NovaFlock SPORT 8000 has a low tack selfadhesive polyester carrier, which is excellent for large numbers & logos.
- Nylon or textiles that are hydrophobic impregnated must be heat pressed with NovaFlex NYLON 3800.
- For sublimated fabrics please use NovaFlex SUBLI-STOP 4000 series.

For best results we recommend to store the rolls away from heat moisture & direct sunlight

Roll sizes: 500mm x 10m approx 20" x 11 yds

600µm 24 mil Colpolyester Hotmelt
Viscose Flock 0,5mm, 20mil
Pressure Sensitive Adhesive
Polyester Film

SPORT 8000

8001 WHITE

8002 BLACK

